Die durchschnittliche Länge eines deutschen Wortes beträgt zwischen sieben und acht Buchstaben. Das ist doch interessant, oder? Na ja. Es geht so. Manchmal muss ich Zeichen zählen, weil ich für meinen Text eine bestimmte Zeichenzahl nicht überschreiten darf. Das ist nicht schwer, weil das der Computer für mich übernimmt. Ich frage ihn dann: „Und Computer, bei wie vielen Zeichen sind wir denn?“, und er sagt dann: „2.907“, und ich dann: „Mist!“, weil ich nur 2.800 lang sein darf. Aber das ist normal. Wir sind immer zu lang. Und dann geht’s ans Kürzen, und dann freu’ ich mich natürlich, wenn ich ein Wort, das weit über dem Durchschnitt liegt (sagen wir zum Beispiel bei 23 Zeichen), genüsslich, Taste für Taste, Buchstabe für Buchstabe, tilgen darf, dass ich streichen kann, ohne dass das auch nur einen einzigen Menschen stören würde. Manche Wörter kommen einfach nur breitbeinig daher, bringen aber nichts mit außer einem Haufen Erklärungsbedarf (16 Buchstaben). Ist so. „Ist so“ besteht aus zwei Wörtern mit je drei und zwei Buchstaben. Schlank, elegant, vielsagend. Wissen Sie was ein „Übertragungsgesetz“ (18 Buchstaben) ist? Ich nicht auf Anhieb.
Das Ding ist ja, dass der Computer beim Zeichenzählen auch Punkte, Kommas und manchmal sogar Leerzeichen mitzählt. Das finde ich grenzwertig. Anderseits: Wenn die Leerzeichen, also die Lücken zwischen den Wörtern, wegfallen würden …, dann wär’ hier aber was los: von wegen deutsche Wörter haben im Durchschnitt sieben bis acht Buchstaben … Absätze zählt der Computer übrigens auch mit. Das verstehe ich. Absätze haben, wenn sie überlegt gesetzt sind, Bedeutung, was mich dann allerdings zu der Frage bringt: Haben Buchstaben Bedeutung? O, was für eine schöne Frage. A, was für eine Erleuchtung, deren Antwort erwarten lässt. I, jetzt ist aber genug. U, bin ich müde. E, jetzt weiß ich gar nicht mehr, um was es hier überhaupt geht.
Klar, weiß ich das. Um Isogramme. Es geht um Isogramme, um Wörter (oder Sätze), in denen jeder Buchstabe genau einmal vorkommt. „Easy“, zum Beispiel. Je länger ein Wort wird, umso weniger easy wird das natürlich. „Unmöglich“ ist das jedenfalls nicht, wie man sieht. Und natürlich wünscht sich jedes Isogramm irgendwann einmal zu einem Pangramm zu werden, zu einem Satz, in dem alle (!) Buchstaben des Alphabets mindestens einmal vorkommen. Beispiele kann ich dafür keine nenne. Bin sonst weit über meinem Zeichenlim
DiKa